stc.org/region8/nbc

northbay news

The monthly newsletter of the NorthBay Chapter of the Volume 7, Number 8, August 2000

Society for Technical Communication

Writing for Programmers, Part 3

Ken Delpit, Newsletter Staff
This is the third of a three-part series of articles
about writing for programmers. The series began
Jollowing a presentation (“Programming Concepls
— and Terminology for Technical Communicators”) by
é Andrea Ames, STC Region 8 Director-Sponsor, at the
-
\ March chapter meeting.
In Part 1 (April 2000), Andrea assured us that
d technical writers have what it takes to write about object-
— TR = oriented programming (OOP) without having actual
= programming experience. In Part 2 (May 2000), we
explored the fundamental concepts and meaning of OOP,
and compared it to traditional programming. In Part 3,
we discuss the OOP application development process,
compare various OOP environments, and consider the

In This Issue role of the OOP technical writer.
How Are OOP Applications Developed?

“The basic building block out of which all living things are composed is the cell. Cells are
[J Editorial from the President organic ‘packages’ that, like objects, combine related information and behavior.” —David
[7 This Month's Meeling A. Taylor, in Object Technology, A Manager's Guide

“Oops, Here comes OOPRP.”

L] Writing for Programmers, Part 3

. Continues on page 4 [1
L] The Pan-Pacific Conference

L[] Workshops in Technical
Communications Consistency and Competition
[7 Upcoming Events Jobn Dibs

LI Employment Opportunities This issue features the finale of Ken Delpit's three-part series, Writing for

Programmers. The quality and length of this series reveals Ken’s and Andrea’s consistent
effort to tackle a difficult and an important topic. The writeup of Paul Kaldunski’s
presentation, “Bandwidth to Burn,” is forthcoming in the next issue.

Competition will be a topic for our upcoming open meeting on August 17. Sponsored
by Bay Area STC chapters, Touchstone is a local competition for technical communicators.
Distinguished entries from Touchstone are entered in the STC International Technical
Communications Competition. Due to the shear size and location of our Bay Area chapters,
m society for technical communication expect several entries from our region to reach this prestigious accomplishment level.

[

northbay news, august 2000

northbay officers
and committee chairs

president

john dibs

(707) 792-1791
jdibs@earthlink.net

vice-president
barbara herbert
barbara@sonic.net

first vice-president
(programs)

kurt huget
huget@hooked.net

newsletter

editor: john dibs

publisher: shelley hoose
(hoose@mac.com)

newsletter staff:

ken delpit (kdelpit@compuserve.com)
gabrielle de serres
(gabrielle.de.serres@usa.alcatel.com)
barbara herbert (barbara@sonic.net)
michael meyer (mmeyer@sonic.net)

web
shelley hoose

membership/telephone tree
whitney parker

(707) 537-1792
whitneyp@aol.com

hospitality
michael simoni & gabrielle de serres

treasurer
carolyne gibson

submitting articles and ads
We welcome articles, advertising,
and news about meetings, work-
shops, and courses that pertain to
technical communication. Please
email simple text to the editor at
jdibs@earthlink.net

For our current advertising rates,
please email or phone the editor.

reprints and distribution

If you reprint articles from the
northbay news, please credit them
and forward a copy to the editor.
Reprints in non-STC publications are
subject to the author’s approval.
Copyright © 2000 northbay news.
northbay news is free to NorthBay
Chapter members. Nonmember
subscriptions are $6 per year.

STC Mission Statement
The mission of the Society for Technical
Communication is to improve the quality

and effectiveness of technical
communication
for audiences worldwide.

This Month’s Meeting
Thursday, August 17, 2000

e Northern California Technical
Communications Competition
(NCTCC) Winning Entries

e Open Forum and Discussion

Join us this month as Whitney Parker reviews the NCTCC winning entries
and we have an open discussion on topics of interest.

e View the winning entries for the 1999 NCTCC

e Learn about the various documentation categories and opportunities for
entering a discussion and judging in this prestigious STC competition

* Join in discussion about topics of interest to technical communicators

Short presentations for the open forum portion of the meeting are welcome.
Please contact huget@hooked.net in advance of the meeting if you are

interested in giving a mini presentation.

Please bring your ideas and questions to this month’s meeting!
Cost: $2.00 members; $4.00 non-members

Meeting Time & Schedule

Date: Thursday, August 17, 2000
Location:: Parker Compumotor, 5500 Labath Dr., Rohnert Park
Time: 5:30 - 6:30 Networking and Refreshments
6:30 - 8:15 Introductions and Program
8:15 - 8:30 More Conversation, Idea Swapping

Welcome new STC members!

Francesca Flynn Welcome STC members
Liz Kaiser transferring to the NorthBay
Christopher Myrick chapler!
Will Ross Rolfe Dlugy-Hegwer
Andrew Dugas
Janice Fitzpatrick

northbay news, august 2000

The Pan-Pacific

Conference

Registration for the Region 7/8 Pan-
Pacific Conference is running at a record
clip, but there is still time to register. Said
conference chair Jack Molisani, “We're
delighted at the strong turnout to date.
Attending this conference means an
opportunity to network with fellow
professionals, an opportunity to learn, and of
course an opportunity to enjoy getting to
know some great people!” The conference
takes place October 19—21 in Honolulu,
Hawaii.

Molisani continued, “There’s still space
for more registrants.” While rooms at the
conference hotel, the Renaissance Ilikai on
Waikiki Beach, are nearly booked (and may
be sold out by the time this article is printed),
rooms of comparable quality and price have
been reserved just steps away from the Tlikai,
at the Hawaii Prince. Furthermore, with
some 100 workshops and sessions planned
for the conference program, there will be
plenty of sessions to accommodate everyone
at the conference.

Surprisingly Affordable

Conference costs are surprisingly low,
and “are a bargain considering the
incredible value of this conference,” said
Molisani. The conference fee is $275, and
hotel accommodations can be had for as
little as $57.50 per person, double occupancy.
Discount airfare is also available.

For best travel rates, contact the
conference travel agency, Seawind Tours and
Travel, at 1-800-424-3324, or email
steppc@seawindtours.com.

To register for the conference, download
the preliminary program from the
conference Web site: wwwpan-pacific.org,

Conference Program:
Abundant Choices

Every communicator will leave this
conference with much more than just a
suntan. Program sessions address the needs

of beginners and experts alike. More than
100 speakers will share their knowledge and
insights with conference participants in 70
sessions and 32 full- and half-day
workshops. Topics cover writing and project
management, career development,
knowledge management, mentoring,
collaboration, contracting and job
searching, project management, distance
learning, training and development, and
even contract law and ethics. In addition, as
befits an international conference,
translation and writing for international
audiences is thoroughly covered.

The keynote speaker for the conference is
Martha Baer, senior contributing editor at
Wired magazine. Baer has served as a
writer, editor, consultant, producer, and
research chief for the publication, guiding it
to its edgy, pre-eminent voice while covering
technology and Silicon Valley. Her wide-
ranging talk will deal with technical style,
audience, and interface issues, as well as the
state of our profession as seen from one of
today’s most exciting publications.

Tours and Activities

If you find the idea of spending time on
the most beautiful beach in the world
appealing, this conference is for you. And
what’s a trip to Hawaii without a luau?
You'll have an opportunity to sample the fare
of the islands and the culture of Polynesia at
our luau on Thursday night, as well as take
adinner cruise on Saturday to view the
magnificent Waikiki waterfront!

For More Information

Visit the conference Web site, wwwpan-
pacific.org, for more information about the
program, For travel information contact
Seawind Tours and Travel at 800-424-3324
or 800-949-4144. For any other question,
contact conference chair Jack Molisani,
jackm@ClarityTechnical.com.
About the author: Jay Mead is past-
resident of the STC Rocky Mountain
Chapter, and PR chair for the Pan-Pacific
Conjerence.

! 0

TheNCTCC Committee
Needs You Now!
What

Volunteers to provide expertise in the
following areas for the STC Northern
California Technical Communications
Competition (NCTCC) Committee this year.

Who

* NorthBay Chapter Liaison to attend committee
meetings and serve as 2 communication
conduit for our chapter.

e Graphics Artist for design work on this year's
NCTCC Competition materials — shape the
image for this highly visible STC effort.

* Web Weaver for content and user interface
design, maintain web page throughout
competition, and enhance as appropriate
(may be same person as Web Page Techie)

® Web Page Techie — May be same person as
Web Weaver to assure smooth functioning of
Competition Web page — technical effort
will include arranging for hosting, linking,
and testing of page(s) — will include on-line
forms for submitting entries, applications to
serve as judge, judging forms, efc.

Why

Participating in this highly visible, respected

competition on the NCTCC Core Committee

gives you the chance to demonstrate your
talents to peers and companies doing
technical communications work throughout

Northern California, hone skills, add to your

resume, and enjoy the work with a great

group of volunteers.

When

Immediately if not sooner. Kickoff planned
early in August.

How

Contact Judith Herr, NCTCC Chair,
herrj@home.com for information, or to
volunteer (925-443-4515). For the chapter
liaison volunteer role, please contact John
Dibs (707-792-1791)

[

3

northbay news, august 2000

Writing for Programmers
Continued from page 1

Andrea describes the application
development process as a series of five basic
steps:

1. Design

2. Code

3. Compile

4. Test and debug
5. Deploy

Ideally, all products will have progressed
through each step before they are deployed,
and all products will remain in a step until

Software development is not like fast
food: “sufficient cooking” is required.

the product has been sufficiently “cooked.”
Only when the product has met all criteria
will it be promoted to the next step. Ah, but
the ideal is an elusive goal in software
development.

For a couple of reasons, these steps are
not strictly linear. For one, software
development is, by nature, an iterative
process. Systems are designed, built, and
tested. Testing invariably reveals problems
with the implementation, and sometimes
with the design, so the cycle is repeated
until sufficient performance and reliability
are achieved, or until the budget runs out.

For another, steps are sometimes
shortened or skipped entirely, and not
always for the best reasons. Many computer
users have experienced a program that
functioned so erratically, it made them
wonder how the product ever made it out
the vendor’s door. Steps 2 and 3 are essential
for reaching step 5, Andrea says. After all,

you cannot possibly deploy a product
unless you have, at least, coded and
compiled it. Unfortunately, she says,
steps 1 and 4 are too often considered
optional in the application development
process.

Let’s look at each step in more detail.
Step 1: Design
“To err is human, but to really foul
things up requires a computer.” —
Anonymous

In designing an object-oriented
application, one must first identify the
objects. Design doesn’t stop there,
however. Andrea outlines five stages of
OOP object design:

* Object discovery. Determine which
object types will provide the functions of
the application and solve problems for
the user.

* Object assembly. Build the objects and
discover the data (properties) and
functions (methods) that team
members must provide for the objects to
work properly.

e System construction. Bring the objects
together in a final application.

e System extension. Discover how well,
or how poorly, the application is
designed according to its extensibility. It
it is not easy to extend, find the weak
points and fix them.

* Object reuse. Build new systems by
reusing objects in other applications or
subsystems. This process tends to
identify those objects that must be
changed significantly in order to fit a
new, similar purpose. When an object
should be reusable, but isn’t, chances
are that it should be modified for its
original purpose as well.

Notice that these design tasks go
beyond the nominal “design” phase (step
1). In fact, good system design spans the
entire application development process. It
is a paradoxical reality of most software
development, including OOP, that the
design isn't really final until the
development is complete.

Inevitably, as developers progress in a
project, they discover problems, nuances,
and improvements that affect the design.
Depending on real-world considerations,
such as software quality and extensibility
requirements, as well as project budget and
urgency, modifications to the original design
are often required well into the project.

Proactive companies can take measures
early in the design phase that help minimize
subsequent design changes. Depending on
the resources and time available, companies
can employ GUI mockups and product
prototypes to gauge the look and feel before
the programmers begin development in
earnest.

Even better, companies can make sure
the application will accomplish what their
potential customers want. Prerelease
demonstrations and mockups can be
presented to test users and focus groups
for feedback. Companies can engage in
market surveys to assess customer needs,
and they can commission technical
analyses to measure the feasibility and
potential pitfalls of the application.
Writers, as advocates for the reader (user),
are in a terrific position to help with many
of these measures!

Step 2: Code
“The sad thing about artificial
intelligence is that it lacks artifice and
therefore intelligence.” — Jean
Baudrillard (b. 1929), French
semiologist

Programming, or coding, is the
process of writing sozrce statements in
the chosen programming language so as
to turn the design into a working product.
Modern programming languages are
high-level languages. That is, a single
source statement usually results in several
machine-language statements. Freed
from having to write many tedious, low-
level machine-language statements,
programmers’ productivity is effectively
amplified.

Continues [J

4

northbay news, august 2000

Writing for Programmers
Continued from page 1

However, computers cannot execute
high-level source statements directly. A
computer’s native language, the only
language that it can “speak,” is the one
that is burned into its silicon. Therefore,
all source programs must be converted
into machine language before they can be
run, or executed. There are two basic types
of source-to-machine-language

Run-time
interpretation
presents a key benefit
for the user as well as
for the developer...
With a separate
interpreter for each
platform,
programmers can
develop a single
source application,
and deploy it on

multiple platforms!

translation processes: compilation and
interpretation.

Many high-level languages, each with
its own inherent strengths and
weaknesses, are available for the
programmer’s toolbox. “Legacy”

procedural languages, such as Pascal,
COBOL, and FORTRAN, are still being
used, though their star is fading. Object-
based languages, such as VisualBasic,
occupy a middle ground between legacy
languages and true object-oriented
languages, such as C++, Java, and
Smalltalk.

Step 3: Compile

“You have riches and freedom here but I
feel no sense of faith or direction. You
have so many computers, why don’t you
use them in the search for love?” — Lech
Walesa (b. 1943), Polish trade union
leadler, politician

Both compilers and interprefers read
a program’s source statements and
translate them into machine language.
Compilers and interpreters differ in how
and when they do the translation. Both
have their advantages and disadvantages,
and both have their places in today’s
programming landscape.

Compilers are run, usually in a batch
process, during application development.
Compiler output is stored, so that once
compiled, programs can be run as many
times as desired without having to be
compiled again.

Interpreters and scripting languages,
on the other hand, are called into service
each time a user wants to run the
application. Generally, interpreter output
is not stored permanently, so that
interpreted programs must be interpreted
each time they are run.

Andrea illustrated the distinction
between compilers and interpreters with a
culinary analogy. Suppose a spouse brings
back to America a recipe for spaghetti sauce
from his ancestral Northern Italy. The recipe
is written in Italian, and the “computer”
(that is, the cook) speaks only English. So
someone must sit down with an Ttalian-
English dictionary and a calculator and
translate the words and metric units into
English equivalents.

An interpreter would do the

translation each time the recipe is used. A
compiler would do the translation once,
and would save the translated recipe for
future use. The compiled recipe would be
“executed” faster, but would not recognize
recent changes to the original Italian
source recipe, as would the interpreted
recipe.

Compared to interpreted programs,
compiled programs are small and fast.
Today, most conventional applications,
such as word processors and spreadsheets,
are compiled. Given that a computer can
execute only machine-language
statements, separate versions of compiled
applications must be created for each
platform on which they are to be run. And
compiled programs are inflexible—they
must be recompiled before any changes to
the source language can take effect.

While comparatively slow in
execution, interpreted applications offer
distinct advantages over compilers. For
one, the source code itself can be changed
right up to the time it is run. This
flexibility is a time-saver for developers,
and also allows the possibility of
dynamically tailored programs. Moreover,
run-time interpretation presents a key
benefit for the user as well as for the
developer—the opportunity for platform
independence. With a separate interpreter
for each platform, programmers can
develop a single source application, and
deploy it on multiple platforms!

Step 4: Test and debug

“Perfection of means and confusion of
goals seem— in my opinion— to
characterize our age.” — Albert Einstein
(1879-1955)

One would hope that all software is
thoroughly and rigorously tested before it
is marketed. And one would be naive to
think that this happens routinely. All too
often, it seems, the desire to get to market
first, or at least early, cause marketing
objectives to displace technological

Continues [J

northbay news, august 2000

Writing for Programmers
Continued from page 1

excellence as the prime objective.

Some companies do an admirable job
of balancing product timeliness and
quality. Others cut the testing phase short,
or skip it entirely. Granted, no software
product is ever perfect or completely bug-
free, but too many products are deployed
before they’re ready. Effectively,
companies that skimp on testing are
letting their users perform the testing.

When done conscientiously and
systematically, usability testing can be a
company’s best friend, not to mention the
users’ inside ally. Usability testing can
help a product hit the intended target,
reveal embarrassing or critical flaws
before they surface in the real world,
improve ease of use, and identify potential
enhancements for future versions.

Unfortunately, as confirmed by Mic
Vandersluis of Parker Compumotor at the
June meeting (“A Case Study in
Usability”), it takes a while for companies
to see the light when it comes to usability
testing. Naive project managers regard
usability testing as a simple completion
task that they can tack on the end of a
project, like a final layer of varnish.
Enlightened project managers recognize
usability testing as an ongoing, essential
part of product development and as a
tremendous contributor to customer
satisfaction.

Step 5: Deploy
“Seventy percent of success in life is
showing up.” — Woody Allen (b. 1935)

The somewhat militaristic term
“deployment” is in vogue at many
businesses. Referring generally to the act
of delivering a product to customers, the
word can take many forms. It can
represent the completion of a long,
arduous journey through the development
of a major new product, or it can
represent a simple product update. It can
be accompanied by gala fanfare, hired

entertainers, and unrestrained marketing
giddiness, or it can be announced by a
mere postcard or e-mail.

Whatever form it takes, deployment
usually means the nominal end of the
line for a product version. Whether it also
means the beginning of a marketing
disaster or a technical support nightmare
depends largely on how well steps 1
through 4 were performed.

How Do Various Object-Oriented
Languages Compare?

“Man is still the most extraordinary
computer of all.” — Jobn F. Kennedy
(1917-1963)

C++ is a compiler, producing
generally compact, quick programs,
offering true OOP capabilities. It is
somewhat portable in that C++ compilers
exist on nearly all platforms. Still, because
of operating system-specific functions and
diferences between compiler
implementations, significant portions of
C++ programs must be converted
manually before the programs will
execute on another platform.

Java is neither a compiler nor an

Created by an English-speaking cook
from an lItalian recipe with French
ingredients in Greek cooking pots...oh
my, it's OOP.

interpreter exclusively, but is sort of both.
The Java compiler produces an
intermediate form of code, bytecode, that
lies somewhere between source and
machine language. The Java Virtual
Machine (JVM), a run-time interpreter, then
interprets the bytecode rather than the
original source code. While not a true
compiler, this gives Java some of the
advantages of a compiled language, mainly

faster execution speed, while retaining its
platform independence. JVMs for multiple
platforms are free from various sources, such
as Sun Microsystems, the original developer
of Java.

Though it hasn’t taken off like Java,
Smalltalk is also a true OOP language.
Developed at Xerox Palo Alto Research
Center (PARC) around 1980, Smalltalk
was a pioneering effort at creating object-
oriented environments and graphical user
interfaces. Many products today, including
Windows and Macintosh operating
systems, as well as Java, owe much to
Smalltalk’s trailblazing efforts.
Nonetheless, Smalltalk’s time has
probably come and gone. Smalltalk is, as
Andrea says, “not widely used for any
practical purpose.”

Java programs can be run in two ways,
as applications or as applefs. Java
applications are run “standalone,”
outside of a Web browser. Java applets can
be run only in a Web browser
environment, and consequently must
follow the security policies of both the
browser and of Java. Both applets and
applications may use any and all features
of the Java language.

Security is a key benefit of applets.
Security is integral to Java’s core and thus
cannot easily be compromised. Neither
the applet user nor the applet
programmer, for example, can “touch” a
computer’s hard disk directly. They cannot
delete files, check license registrations, or
do anything not specifically authorized by
Java security.

In contrast, ActiveX components provide
dangerously loose access into your computer
for unscrupulous and bumbling
programmers. A part of Microsoft’s
proprietary component object model (COM)
architecture, ActiveX is “. . . specifically
designed to facilitate distribution of
components over high-latency networks and
to provide integration of controls into Web
browsers.” (Excerpt from Microsoft Web site)

Continues [J

northbay news, august 2000

Writing for Programmers
Continued from page 1

ActiveX browser components are run
as applications. In short, nothing truly
reliable controls them and users are
forced either to provide their own security
or to do without. To protect themselves,
ActiveX users should set options in their
browsers to issue alerts when potentially
suspicious events, such as imminent
downloads, occur. Besides the burden of
setting up adequate security manually,
these precautions can be an even larger
pain during a typical interactive Web
session.

Despite the similarity of names,
JavaScript is not directly related to Java.
JavaScript is a scripting language
developed by Netscape Communications.
JavaScript, however, is not a true object-
oriented language, and its performance
suffers when compared to Java because
JavaScript is not compiled into
intermediate bytecode.

Basic online applications and
functions can be added to Web pages with

You don’t read the
code. You pattern
match it...So, you
don’t have to be a
programmer to
write about
programming.

JavaScript, but the number of available
APT functions is far fewer than the
number available with Java. JavaScript
code is generally considered easier to write
than Java, especially for novice
programmers. A JavaScript-compliant
Web browser, such as Netscape Navigator,

is required to run JavaScript programs.

The Unified Modeling Language
(UML) is a set of an object-oriented
analysis and design (OOA&D) methods
intended to help developers design object-
oriented applications. Based on 00A&D
methods of Grady Booch, James
Rumbaugh, and Ivar Jacobson, UML is
now a standard of the Object
Management Group (OMG). UML
provides a system for envisioning and
organizing the objects in an
application—before coding begins.

Perl (Practical Extraction and Report
Language) is an interpreted language,
based on C and several UNIX utilities. A
program in Perl is known as a script. Perl
has powerful string-handling features for
extracting information from text files,
and is often used for system
administration tasks.

PERL was devised by Larry Wall at
NASA's Jet Propulsion Laboratory. Lately,
the popularity of Perl has exploded
because of the language’s power to
provide interactivity in a Web page and to
manipulate Web content. Though not
originally designed as an OOP language,
an object-oriented version of the
language (Perl 5) has been introduced.

What Is the OOP Writer’s Role?
“You don’t read the code. You pattern
match it.” — Andrea Ames

So, you don’t have to be a
programmer to write about
programming. As Andrea advises in the
quotation above, simply knowing some
programming fundamentals and being
able to recognize patterns in source code
give you the tools you need to provide
useful documentation for programmers.
“If your job includes writing code
samples, then you might want to take a
programming class,” she says.
“Otherwise, you can talk about the code
without having written it,” she says,
distinguishing between concepts and
syntax. Andrea recommends the “algae-

skimmer version of programming
concepts” for your OOP education. That s,
you should skim just the broadest, most
abstract concepts, and move on.

It helps to understand the
programmers’ integrated development
environment (IDE) and their application
development tools. Programmers use the
IDE to enter, compile, test, and debug their
programs. By knowing the IDE and
understanding the purpose of the
application, you can, for example, set up
testing scenarios for programmers to use.

If you spend any time at all writing for
programmers, chances are you will be
asked to develop API (application
programming interface) documentation.
The API is “the facade,” Andrea says, the
face it presents to the outside world. The
APT provides other programmers with the
information they need to develop
complementary programs and subsystems,
so APT documentation can be critical to a
product’s success.

If you find yourself documenting APTs
for a Java application, you may find
JavaDoc particularly useful. JavaDoc is a
tool for generating API documentation in
HTML format from formatted comment
(nonexecutable) statements inserted into
the source code. The comment statements
may be inserted either by a programmer or
by a technical writer. It may seem
daunting at first to be inserting statements
into programmers’ source code, but you
won't affect the program’s execution as
long as you follow the simple comment
syntax rules.

JavaDoc recognizes both its own
comment statements and basic elements of
the program, then produces
documentation automatically. Sounds
easy and useful, right? Yes, but there are a
few caveats: (1) Don’t expect publication-
ready documentation without
intervention. In all likelihood, you will
want to revise JavaDoc's output for format
and content. (2) Don’t expect to build a

Continues [J

northbay news, august 2000

Writing for Programmers
Continued from page 7

document incrementally from different
runs of JavaDoc. JavaDoc generates one
and only one document each time you
run it. It cannot modify or directly
incorporate results from previous runs.

(3) Don’t expect to run JavaDoc with
source code from other languages, such as
C++ or VisualBasic. JavaDoc runs only
with Java source code.

Whatever type of programming
documentation you develop, you will be
doing your programming readers a service
if you model the documentation after the
software itself. That is, you should strive to
make the documentation familiar to the
programmer in structure, format, and
terminology. For example, in a chapter
that describes a particular class, you can
identify objects within that class with
level-one headings and the objects’
properties and methods with level-two
headings. “The best APT documentation
I've seen follows the code,” says Andrea.

Programmers use object models to
represent their OOP projects. An object
model depicts—usually with a
combination of diagrams and text—the
hierarchy and elements of an application.
An object model is an ideal way to present
APT documentation to a programmer. If
the object model doesn’t exist outside a
programmer’s head, then you can offer to
help create one—a great opportunity to
learn the product and build your
document’s structure at the same time.

If you are developing online
documentation, such as HTML help or
JavaHelp, an object model diagram makes
an ideal “home page” or table of contents
for your document. By clicking a
graphical representation of an object, the
reader can display properties and methods
for that object. In like fashion, the reader
can keep “drilling down” for more detail
as needed.

Rational Rose, by Rational Software
Corporation, is a visual software-modeling

tool based on UML. “Rational Rose allows
you to visualize, understand, and refine
your requirements and architecture before
committing them to code,” the company
claims on its Web site. In theory at least,
this tool could be a boon to technical
writers as well as to programmers. In fact,
some companies have tried to use Rose as

Whatever type of
programming
documentation
you develop, you
will be doing your
programming
readers a service if
you model the
documentation
after the software
itself.

an APT document-generating tool.

However, judging by the personal
experiences of some in the audience (at
Andrea Ames’ presentation during the
March meeting), Rose offers more
promise than fulfillment. The consensus,
it seemed, was that by the time you
overcome all the obstacles thrown in your
path, you might as well have written your
document from scratch.

Because the structure of your
document is dictated by the structure of
the software, you should “Let the
programmers do the structural stuff, ”
Andrea says. Your job, then, is to do what
you're best at: “Document the gotchas,
write the how-to instructions and
conceptual explanations, describe how
classes work together and which classes
can work with others.”

In describing how she writes for

programmers, Andrea describes hers as “a
technology-versus-tools approach.” Her
strategy is that you, the writer, provide the
tools, but not the technology. That is, your
job is to contribute your writing,
interviewing, and organization skills. It’s
also your job to obtain training about
programming, but in the broadest
possible manner. It is 7207 your job to
provide the subject details, for to do so
would entail becoming a peer
programmer. “‘Let your employer and the
project provide the details. The details do
not come from your learning,” Andrea
Says.

References and Resources

“Get your facts first and then you can

distort them as much as you wish.”

— Mark Twain (1835-1910)

e Andrea Ames: andrea@verbal-
imagery.com, (650) 365-7520

e Grady Booch: numerous titles,
including Object-Oriented Analysis
and Design With Applications, Object
Solutions: Managing the Object-
Oriented Project; The Unified
Modeling Language User Guide, and
The Best of Booch: Designing
Strategies for Object Technology

e Martin Fowler with Kendall Scott: UML
Distilled

e Ivar Jacobson: Object-Oriented
Software Engineering: A Use Case
Driven Approach

e Geoffrey James: 7he Tao of
Programming

* Rational Software Corporation,
Rational Rose (www.rational.com)

e James Rumbaugh: numerous titles,
including Object-Oriented Modeling
and Design;, The Unified Modeling
Language Reference Manual, and The
Unified Software Development
Process

e Sun Microsystems: www.sun.corn,
WWW.java.sun.com or www.javasoft.com
(Java); www.java.sun.com/products/

Continues [J

northbay news, august 2000

Writing for Programmers

Continued from page 8
javahelp/index.html (JavaHelp);
www.java.sun.com/products/jdk/
javadoc/index.html (JavaDoc)

e David A. Taylor: Object Technology, A
Manager’s Guide [Author’s note: [
found this book to be an excellent and
succinct (200 pages) introduction into
00dom.]

e Writer’s training: Santa Rosa JC, Sonoma
State University (classroom); numerous
“Teach Yourself” tutorials, including those
for C++, Java, PERL, and VisualBasic
(books); O'Reilly & Associates:
www.oreilly.com; Smart Planet:
www.smartplanet.com; WebMonkey, the
Web Developers Resource:
www.webmonkey.com (online)

[]

Workshops in
Technical

Communication

at the School of Extended
Education, Sonoma State
University

“Introduction to Technical Writing”
Saturday, Sept. 30, 9am - 4pm
Instructor: Mark Weddle, Cisco Systems

“Researching Information Gathering
and Analysis”

Saturday, Oct. 21, 9am - 1pm
Instructor: Eunice Malley, Next Level
Communications

For more information, visit
www.sonoma.edu/exed/Text/Fall/tc.html

Park

This position requires the following,
audiences

Science, Engineering, or related area

development meetings

a rapidly changing environment.
e FrameMaker experience

Next Level Communications, Rohnert

This position involves, but is not limited to, writing
software installation and UNIX administration materials for
our telecommunications application. Bring your interest in
learning new technologies and in working hands-on with
our equipment. We need someone to produce
documentation that is accurate, grammatically correct, and adheres to our style guidelines.

e Good knowledge of English grammar
e Technical knowledge of UNIX and Oracle is a plus.
Contact: Dena Sherick — dsherick@nlc.com

Software Technical Writer

Help
Wanted!!

e Three or more years of experience writing software documentation, targeted for various
e BA,BS, or graduate degree in Technical Writing, Journalism, English, Computer

* Experience proactively gathering technical information by interviewing developers and
product managers, reading specifications; using the product; and attending product

e Ability to work on multiple projects simultaneously, and manage time and deliverables in

Soon!

Aug. 27 to Sept. 1,
2000

Seybold Conference 2000
Moscone Center, San
Francisco

Geared for web and print publishing
professionals, Seybold features
seminars on such topics as XML, PDE,
and E-Books, and tutorials on
Photoshop, Acrobat, XML, writing for
the Web, and graphic design for the
Web. The exposition (free admission)
runs from 8/29 to 8/31 and is a
golden opportunity to see the latest
publishing tools and technology (and
pick up some fun freebies too!).
www.key3media.com/
seyboldseminars/sf2000

October 19-21, 2000

STC Regions 7 and 8 Pan-
Pacific Conference in
Hawaii

For late-breaking information, see
www.pan-pacific.org, and Jack
Molisani’s articles there.

