
AGILE SOFTWARE DOCUMENTATION

Mike Ziegenhagen

mikeziegenhagen@yahoo.com

North Bay STC meeting

March 15th, 2012

Photo courtesy of www.mojomechanics.com

HERE'S THE PLAN

• Short overview of Agile Software Development
• Wikipedia Definition: Agile software development is a group of software

development methodologies based on iterative and incremental
development, where requirements and solutions evolve through
collaboration between self-organizing, cross-functional teams.

• Introduction of Agile Software Documentation
• Wikipedia Definition: The page "Agile software documentation" does not

exist.

AGILE SOFTWARE DEVELOPMENT
(A mini overview)

THE DETAILS
Individuals and Interactions – in agile

development, self-organization and
motivation are important, as are
interactions like co-location and pair
programming.

Working software – working software will be
more useful and welcome than just
presenting documents to clients in
meetings.

Customer collaboration – requirements cannot
be fully collected at the beginning of the
software development cycle, therefore
continuous customer or stakeholder
involvement is very important.

Responding to change – agile development is
focused on quick responses to change and
continuous development.

PRINCIPLES
• Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout
the project.

• Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

• The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

PRINCIPLES (CONT'D)
• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a
constant pace indefinitely

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity--the art of maximizing the amount of work not done--is
essential.

• The best architectures, requirements, and designs emerge from
self-organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Product
Backlog

Product
Backlog

ITERATIVE SOFTWARE DEVELOPMENT

Product
Backlog

Product
Backlog

Feature
Feature

Feature Feature
Feature

Feature

Sprint
1

Sprint
2

Sprint
3

Software
Release

• ROLES
• Scrum Team

• Cross functional
• Many small scrums

• Scrum Master
• Runs meetings

• Product Owner
• Represents user
• Makes Use Cases
• Final Say on Product

Features

MEETINGS
• Release planning
• Use Cases, Scenarios
• Time Boxed estimate (backlog)
• Sprint (iteration) planning
• Capacity
• Points (1, 2, 3, 5, 8, 13, 20)
• Velocity
• Daily standup
• What did you do
• What will you do
• Are you blocked?

HELPFUL JARGON

• PRODUCT BACKLOG
• Backlog Grooming
• Velocity
• Burn down

• USER STORY (US)
• Tasks (TA)
• Acceptance Criteria (AC)

• FOR PROGRAMMERS
• Pair programming
• Refactor
• Demos

• FOR WRITERS
• Capacity per scrum team
• Definition of Done (DoD)

MORE HELPFUL JARGON

WHAT WORKS IN AGILE SOFTWARE
DEVELOPMENT

• Agile prevents the spec monster approach,

 which creates bloat ware or phantom ware
• Agile prevents "turn the prototype into a product"

 by embracing that approach
• Changing needs and markets are no problem

 Add or remove iterations to meet change
• Bug backlog is addressed early and often

 preventing unplanned delays in product release

WHAT’S DIFFERENT FOR THE WRITER IN AGILE
SOFTWARE DEVELOPMENT

• The Writer needs to:
• Understand the big picture during release planning
• Understand features from US not from a functional spec
• Estimate your own effort required, in points or hours
• Communicate to others on your team why it takes that long
• Test the feature and document it within the same iteration
• Write just enough

FIGHT CLUB PHILOSOPHY

The most important thing to know about Agile methods or processes
is that there is no such thing. There are only Agile teams. The
processes we describe as Agile are environments for a team to
learn how to be Agile.

 from Agile Software Development: a gentle introduction.

EVERYTHING ELSE YOU NEED TO KNOW ABOUT
AGILE SOFTWARE DEVELOPMENT

• Yeah, it's on Wikipedia....this is what you'll see

THE WATERFALL
(OK to forget)

LESSONS LEARNED
WHEN REPLACING WATERFALL WITH AGILE

• Management buy-in is critical
• Implementation depends on company culture and varies by the

personalities of the participants
• Multiple scrum juggling is the norm for writers

AGILE SOFTWARE DOCUMENTATION

(Hi Honey, I joined a cult!)

AGILE SOFTWARE DOCUMENTATION
MANIFESTO

(just my manifesto, so far)

• Documentation is not needed for discoverable tasks
• Simple is only good when it is complex enough to accomplish work
• Complex tasks need simple documentation
• Documentation is part of the process of users doing their work, it

is not the process (communication not documentation).
• Write the documentation you would like to read
• Occam's razor, make it as simple as possible, but no simpler
• Build documents from the center outward, as time allows. Use the

software, take notes, flesh it out. Do not write the outline and fill in
with content.

PRINCIPLES OF AGILE SOFTWARE
DOCUMENTATION

(IMHO)

• Domain experience is key
• Product owners define use cases (purpose)
• Uses cases dictate documentation needs

(message)
• Persona or role-based docs (audience)

In General

• Treat documentation like a requirement

• Require people to justify documentation
requests

Writing

• Prefer executable specifications over static
documents

• Document stable concepts, not speculative
ideas

• Generate system documentation

Simplification

• Keep documentation just simple enough, but
not too simple

• Write the fewest documents with least
overlap

• Put the information in the most appropriate
place

• Display information publicly

BEST PRACTICES FOR INCREASING THE

AGILITY OF DOCUMENTATION
FROM AGILE MODELING WEBSITE BY ERIC REIS

"IDEALLY, AN AGILE DOCUMENT IS JUST BARELY GOOD ENOUGH, OR JUST BARELY SUFFICIENT, FOR THE SITUATION AT HAND."

Determining What to Document

• Document with a purpose

• Focus on the needs of the actual
customers(s) of the document

• The customer determines sufficiency

Determining When to Document

• Iterate, iterate, iterate

• Find better ways to communicate

• Start with models you actually keep
current

• Update only when it hurts

BEST PRACTICES FOR INCREASING THE

AGILITY OF DOCUMENTATION
FROM AGILE MODELING WEBSITE BY ERIC REIS (CONT’D)

HOW TO DO AGILE DOCUMENTATION
(IMHO)

• Use cases, persona based tasks, focus on the customer
• Collaborative reviews
• Product owners trump engineers
• Iterative writing, don't hold up the user story
• Rewrite during the hardening iteration and have it reviewed
• Rewriting is iterative
• Write overview info last
• Integrate doc planning with Agile planning

BEST PRACTICES

• Do documentation late in the iteration or in the next iteration
• Depends on DoD: Is documentation part of AC?
• Go from simple to complex: reference, then procedures.
• Save conceptual till hardening iterations.
• Have a documentation scrum team and US for doc tasks

unrelated to new feature development.

WHAT WORKS IN AGILE SOFTWARE
DOCUMENTATION

• Minimalism (that’s a whole ‘nother slide show)
• Flexibility (really, do you need slides for that?)
• Collaborative reviews of small amounts of documentation

(see next slide)
• Rewriting (it’s coming too!)

COLLABORATIVE REVIEWS

• Online is best. For example, Acrobat Shared Review
• Advantages include speed, time shifting, ease of use and ease of

including additional reviewers
• Fits iterative process. Many small reviews are better than one

large one
• Feedback cycle of reviewers commenting and reacting to other

reviewers comments. Positive feedback cycle, in theory

REWRITING
(THEORIES)

"Good writing is writing you've rewritten"
Professor Frederick Shook, Colorado State University

"Before you can rewrite it, you have to write it"

Me

"The only thing stronger than the sex drive
is the desire to edit other people's work"

Mark Twain

REWRITING
(STRATEGIES)

• Use collaborative reviews to rewrite

• Use "Flush text" to flush out the truth. This provides the writing
to rewrite

FROM A WRITER'S GUIDE TO SURVIVING AGILE
SOFTWARE DEVELOPMENT (WEB SITE)

BY GAVIN AUSTIN & MYSTI BERRY

Write fiction

Learn to feel comfortable writing documentation for products you can't test
yet. You’re more likely to meet deadlines by writing fiction than by waiting to
write nonfiction for a finished product.

Revise fiction

Learn to revise any fiction before it ships to customers. Insert revision
reminders in documents and add revision reminders to your calendar.

WHAT DOESN'T WORK
IN AGILE ENVIRONMENTS

• Large doc reviews
• Writing top down from concepts to procedures to reference
• Over-planning

CHALLENGES FOR AGILE TECHNICAL WRITERS

• Distributed teams
• Multiple scrums, capacity, how to estimate
• Determining doc needs, using UI to determine complexity
• Estimating hours, points for each TA or US

THE FUTURE OF AGILE DOCUMENTATION

Photo copyright San Marcos Mercury

• Better tool integration?
• More success stories
• Well defined Best Practices

Future Opportunities

FAQS

Q: Do I need my Gantt chart?
A: No, you can put it away now.

Other questions?

RESOURCES
Manifesto for Agile Software

Development

 Agile/Lean Documentation: Strategies

for Agile Software Development

 Agile Software Development: A gentle

introduction

 A Writer's Guide to Surviving Agile

Software Development

 Agile Writer Girish Mahadevan

 http://agilemanifesto.org/

 http://www.agilemodeling.com/essay

s/agileDocumentation.htm

 http://www.agile-process.org/

 http://www.scrumalliance.org/articles

/369-a-writers-guide-to-surviving-agile-
software-development

www/gpod.in

SOFTWARE

• Rally Software (private co., web based)
• Team Foundation Server (Microsoft, Visual Studio based)
• Jazz Agile (IBM, web based)
• XPlanner, (open source, web based)
• TargetProcess (private co., Windows and web)

	Agile Software Documentation
	Here's the Plan
	Agile Software Development
	The Details
	Principles
	Principles (cont'd)
	Iterative SOFTWARE Development
	Helpful Jargon
	MORE Helpful Jargon
	What works in Agile Software Development
	What’s Different For the Writer in Agile Software Development
	Fight Club Philosophy
	Everything else you need to know about Agile Software Development
	Slide Number 14
	The Waterfall
	Lessons Learned �When REPLACING WATERFALL WITH AGILE
	Slide Number 17
	Agile Software Documentation
	Agile Software Documentation Manifesto �(just my manifesto, so far)
	Principles of Agile Software Documentation�(IMHO)
	Slide Number 21
	�Best practices for increasing the agility of documentation �From Agile Modeling website by Eric Reis (Cont’d)
	How to do Agile Documentation�(IMHO)
	Slide Number 24
	Best Practices
	What works in Agile Software Documentation
	Collaborative Reviews
	Rewriting�(theories)
	Rewriting�(Strategies)
	From a Writer's Guide to Surviving Agile Software Development (web site)�By Gavin Austin & Mysti Berry
	What Doesn't Work �IN AGILE ENVIRONMENTS
	Challenges for AGILE Technical Writers
	The Future of Agile Documentation
	Slide Number 34
	FAQs
	Resources
	Software

